Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Rectifiability, Carleson Measure Estimates, and Approximation of Harmonic Functions

Let E ⊂ Rn+1, n ≥ 2, be a uniformly rectifiable set of dimension n. Then bounded harmonic functions in Ω := Rn+1 \ E satisfy Carleson measure estimates, and are “ε-approximable”. Our results may be viewed as generalized versions of the classical F. and M. Riesz theorem, since the estimates that we prove are equivalent, in more topologically friendly settings, to quantitative mutual absolute con...

متن کامل

UNIFORM APPROXIMATION BY b – HARMONIC FUNCTIONS

The Mergelyan and Ahlfors-Beurling estimates for the Cauchy transform give quantitative information on uniform approximation by rational functions with poles off K. We will present an analogous result for an integral transform on the unit sphere in C2 introduced by Henkin, and show how it can be used to study approximation by functions that are locally harmonic with respect to the Kohn Laplacia...

متن کامل

Uniform measures and uniform rectifiability

In this paper it is shown that if μ is an n-dimensional Ahlfors-David regular measure in R which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in R. I...

متن کامل

Rectifiability of Harmonic Measure in Domains with Porous Boundaries

We show that if n ≥ 1, Ω ⊂ R is a connected domain that is porous around a subset E ⊂ ∂Ω of finite and positive Hausdorff H-measure, and the harmonic measure ω is absolutely continuous with respect to H on E, then ω|E is concentrated on an n-rectifiable set.

متن کامل

THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY

Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors-David regular set of dimension n. We show that the weak-A∞ property of harmonic measure, for the open set Ω := Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2016

ISSN: 0012-7094

DOI: 10.1215/00127094-3477128